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Variational Treatment of the Heisenberg Antiferromagnet* 
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A form of the Peierls free-energy variational theorem is applied to the Heisenberg Hamiltonian for a 
three-dimensional system with nearest-neighbor antiferromagnetic interaction. For a large magnetic field 
(hz=gfj,H/4:SJzttl) we find a phase boundary separating a region of antiferromagnetic order from one of 
ferromagnetic order. At low temperatures ($^kT/2SJz<£l) the phase boundary has the leading behavior: 
h=l-a$*12 with ^=2f (3 /2 ) (3 /2TT) 3 / 2 / 5 for a simple cubic antiferromagnetic lattice (e.g., RbMnF3). At the 
phase boundary the magnetization is continuous; whereas a discontinuity in the susceptibility is suggested 
but not firmly established by this treatment. Low-temperature expressions are given for the magnetization, 
susceptibility, and specific heat above the boundary. Numerical calculations show that, for the approximation 
used, the phase boundary extends to a maximum d at which the magnetization is nonzero. For the limiting 
case of h — 0 we obtain Keffer and Loudon's renormalized spectrum and magnetization for a ferromagnet 
and for an antiferromagnet from a single variational calculation. Attention is also given to a reduced 
Hamiltonian which, when treated by the variational method, exhibits the properties of an antiferromagnetic 
molecular field model previously proposed by Garrett for S — J. 

1. INTRODUCTION 

T X 7E are considering the spin-system Hamiltonian 

3e=/ Ef £* Sf. Sf+5+gM# Ef 5,« (l) 

in which the double summation (over lattice sites f and 
nearest neighbors 8) represents the antiferromagnetic 
Heisenberg exchange interaction, and the single summa
tion accounts for the Zeeman energy of the spin system 
in an applied magnetic field H. The symbols / , g, and fx 
denote the exchange energy, Lande' factor, and Bohr 
magneton, respectively. 

Although the ground state of JC (for # = 0 ) is known1 

to be a nondegenerate singlet, neither the eigenfunction 
nor the energy has been given for two- and three-
dimensional lattices. 

For a one-dimensional infinite chain the ground-state 
energy2 and the associated short-range correlation3 

CCf SizSf+$z) are known exactly. Also to be found4,6 in 
the literature are the eigenvalues and eigenfunctions of 
some finite chains. 

If one neglects the StxSt+sx and SiySf+&y terms in (1), 
then what remains is the Ising model6 which has been 
solved exactly at finite temperatures for a one-dimen
sional chain and for the two-dimensional nets, the latter 
f o r # = 0 . 

Now it has been shown7 that for E greater than a 
critical field He^^SJz/gfx, the antiferromagnet Hamil
tonian (1) has the same ground state as the ferromeignet 

* Supported in part by the U. S. Atomic Energy Commission. 
f Part of this work is based on the author's Ph.D. thesis sub

mitted to the University of Washington, Seattle, Washington. 
1 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). 
2 L. Hulthen, Arkiv Fysik 26A, No. 1 (1938). 
3 R. Orbach, Phys. Rev. 112, 309 (1958). 
4 R. Orbach, Phys. Rev. 115, 1181 (1959). 
5 J. des Cloizeaux and J. Pearson, Phys. Rev. 128, 2131 (1962). 
6 G. Newell and E. Montroll, Rev. Mod. Phys. 25, 353 (1953). 

For the linear chain the magnetization expression (A2.3) is not 
correct. One must replace 2K by 4K" and the exponent £ should 
be - i 

7 B. Jacobsohn (to be published). 

Hamiltonian; that is, all spins are parallel to the external 
field. 

Motivated by this latter result, which suggests using 
some of the relatively well-established theory of the 
ferromagnet, we study (1) primarily with attention 
given to the simple cubic lattice in a large magnetic 
field (h^H/Hc=giMH/4:SJz~l), and at low tempera
tures (B=kT/2SJz<<S). The symbols k, T and z denote 
the Boltzmann constant, the absolute temperature, and 
number of nearest neighbors, respectively. 

We find a phase boundary which has the low-tem
perature form 

with 
(2)f(3/2)/3\W 

a== [ — ) (simple cubic). 
5 \lj 

The boundary separates a region of antiferromagnetic 
sublattice canting from a region of ferromagnetic order. 
Across the phase boundary the magnetization is con
tinuous ; whereas a discontinuity in the susceptibility is 
suggested but not firmly established by this treatment. 

Our calculation is based on a modified8-9 (weak) form 
of the Peierls variational theorem for the free energy. 
The weak form of the theorem has been applied in the 
study of superconductivity,10 ferromagnetism,11 anti-
ferromagnetism,12 and general many-body systems.13-15 

Although it is well known to some, we mention that this 
method is essentially equivalent both to first order, 

8 M . Girardeau, J. Math. Phys. 3, 131 (1962). 
9 H. Falk, Physica 29, 1114 (1963); Phys. Rev. Letters 12, 93 

(1964). 
10 L. Cooper, Brandeis Summer Institute Lecture Notes (Brandeis 

University, Waltham, Massachusetts, 1959), Vol. 2. 
11 M. Bloch, Phys. Rev. Letters 9, 286 (1962). 
12 R. Kubo, Rev. Mod. Phys. 25, 344 (1953). 
13 J. Valatin and D, Butler, Nuovo Cimento 10, 37 (1958). 
14 J. Valatin, Nuovo Cimento 10, 843 (1958). 
16 V. Tolmachev, Dokl. Akad, Nauk SSSR 134, 1324 (1960) 

[English transl.: Soviet Phys.—Doklady 5, 984 (1961)]. 
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finite-temperature perturbation theory16 and to a 
method of linearizing the equations of motion13,17 

(random-phase approximation). 
The method of calculation was viewed with some 

confidence after it yielded the following results: 
(a) For h—0 the temperature dependence of the re-

normalized spectrum and the sublattice magnetization 
are in agreement (Appendix A) with well-known 
results,18'19 and the average ground-state magnetization 
is found to vanish.1 

(b) For the linear chain we found20 no phase bound
ary. The variationally obtained Fermion excitation 
spectrum for h=0 is linear in k in the long-wavelength 
limit, and the calculated ground-state energy is close to 
the exactly known value. 

(c) For the ferromagnet (Appendix B) we easily 
obtain the renormalized spectrum and magnetization 
presented by Keffer and Loudon.19 

2. METHOD OF CALCULATION 

The variational theorem states that for a system de
scribed by a Hamiltonian 3C=3Co+(3C— 3C0), an upper 
bound to the exact free energy is 

F = Fo+<3C-3Co)o, (2) 

where F0 is the free energy associated with 5C0, and 

Tr(e-»£) 
(0o= 

Tnf-#Co 
(P=l/kT). (3) 

Frequently F is written in terms of the entropy So: 

F=(5C)o-r50 , 

where 3C0 is taken to be the free particles' Hamiltonian 
and 5o is the associated entropy. 

Our procedure is first to express 5C in terms of boson 
(or Fermion) creation and absorbtion operators ck

f and 
£k. Then 3C0 is selected to be of the form 

3Co=]Ck €kak f0k, (4) 

where ek is the single-particle spectrum to be deter
mined. The operators c* and a* are related by the 
transformation 

Ck^Ukak+Vkd-i? (5) 

in which u* and flk, both to be determined, satisfy a 
relationship which makes (5) a canonical transforma
tion. When £k are boson operators, uk and z>k will be 
real even functions of k and satisfy 

u\?—vk
2 = 1, (boson case). (6) 

i r A . Alekseev, Usp. Fiz. Nauk 73, 41 (1961) [English transl.: 
Soviet Phys.—Usp. 4, 23 (1961)]. 

1YH. Falk, thesis, University of Washington, 1962 (un
published). 

18 T. Oguchi, Phys. Rev. 117, 117 (1960). 
19 F. Keffer and R. Loudon, Suppl. J. Appl. Phys. 32, 2S (1961). 
» H. Falk (to be published). 
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FIG. 1. Sublattice transformations. 

For Fermion operators uk and vk will be complex 
functions and satisfy 

and 

Wk = , w~k; 

KI2+M2=iJ 

I (Fermion case). (6') 

The trial free energy F is extremized with respect to 
functional variations of the transformation uk, the spec
trum €k, the average occupation number n*, and varia
tions of any free parameters. The resulting set of 
coupled nonlinear integral equations is solved to deter
mine the optimum nk, z>k, €k, and varied parameters. The 
physical averages of interest may then be calculated 
according to (3). 

Equation (2) is seen to be equivalent to first-order 
perturbation theory at finite temperatures.16 In our 
method we merely try to optimize our choice of un
perturbed Hamiltonian 5C0. That the method described 
is essentially equivalent to self-consistently linearizing 
the equations of motion for c* and ck

f, has been discussed 
by Valatin and Butler.13'17 

3. ROTATION 

The Hamiltonian (1) is transformed according to the 
sequence of rotations shown in Fig. 1. In terms of the 
transformed coordinates the spin operators become 

SS^ySt*"- (l-72)1/2Si*", 

5 1 ^ ( l ~ 7 2 ) 1 / 2 ^ " + 7 ^ " ? 

(?) 



A1384 

and 
S2*=-YS2*''+(1-Y2)1/2S2*'', 

sv=-*sy", 

The transformed Hamiltonian is 

3C=/ £a Ef Ba-^CA+A+a+H-A-A+a-) 
-472(5f+5 f +a-+5r5f+ 8+)- ( l -2 7

?)^^f+5 2] with 
+g»HyT,tSt; (9) 

where double primes are suppressed, and terms like 
y(l-y2)U2StxSf+t' and #(1-72)1/23V* are dropped, be
cause their expectation vanishes for all ensembles which 
we consider. In writing (9) we have employed the usual and 
definition S±=Sx±iSv. 

HAROLD FALK 

We apply the identity transformation, i.e., (5) with 
uk=l and flk=0, and calculate the thermal average of 

/g\ 3C according to (3) and (4). By using the finite tempera
ture form16 of Wick's theorem, one easily verifies the 
result: 

(&WNJz= ( 2 7
2 - 1)L(S-Ay- (A-B)^ 

-2hy(S~-A), (13) 

A=N-1Y,knk, 

B = iV-1Ek(l-7fc)»k, 

(14) 

(15) 

4. SIMPLE MODEL 

As a simple illustration of the method, we consider 
only the % components of the spin operators in the 
rotated model (9). We take S=% and write Sg

z in terms 
of fermion operators cg: 

Sg'=cjcg-S. (10) 

The problem is now to treat the Hamiltonian 

3C=/ Zs Ef C(272-1) (tfct-S) W % r ^ ) 
+2hy(cihf-Sni (11) 

where 
h=gnH/4SJz 

and 

The Fourier Fermion amplitudes ak are defined by 

(12) 

trtscr »tanh(<r/0) 

7k=«->Eicos(k.6). (16) 

By requiring that (2) be stationary with respect to 
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FIG. 3. Curves of constant canting of the sublattices, where the 
phase boundary locus is y — 1 (simple model). 

variation of €k, ti^, and 7, we find the coupled equations 

cr=iV-1Ektanh(a )k/^, (6=2kT/2SJz), (17) 

2(A-B) = N~l Ek 7k tanhK/0) , (18) 

hr~yta'-l(A-B)q, (72<D, (19) 

where the spectrum is 

c o k - 2 ^ 7 - ( 2 7 2 - l > - 2 ( 2 7 2 - l ) ( ^ - ^ ) 7 k , (20) 

and the reduced magnetization is 

<r=\(S*)*\/S 
= 1-2,4. (21) 

FIG. 2. Reduced sublattice magnetization (simple model). By observing that £ k 7 k =0 for cubic lattices, we find 
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the particular solution 

er=tanh(<r/0) for <y2<l (22) 
= tanh[(2A-er)/0] for <y2=l, 

h=y<r for 7 2 < L (23) 

This solution is equivalent to a heuristic molecular field 
result previously obtained by Garrett.21 Figure 2 shows 
a, the reduced sublattice magnetization, and^Fig. 3 
shows a family of curves each for a particular y (the 
cosine of half the angle of relative canting of the sub-
lattices). The curve for 7 = 1 is the phase boundary 
£hc=ta,iih.(he/dc)l across which the magnetization, ya} 

is continuous; whereas the susceptibility, x=d(7a)/6^, 
has a discontinuity Ax==CAc

2-(l~^)]/Ci?c+(l"~W)] 
shown in Fig. 4. Typical magnetization curves^are 
plotted in Fig. 5, and it is clear that for this model the 

0.6 [- Y 

x \ / 
< / 

0.4 h / 

0,2 V X 

Q\*-^\ 1 1 : 1 :—. 1— 
0 1 . 2 3 4 

FIG. 4. Discontinuity in the magnetic susceptibility across 
the phase boundary (simple model). 

magnetization is temperature-independent within the 
region enclosed by the phase boundary. 

We presented the above simple model to illustrate 
. our method and to obtain a qualitative basis for dis
cussing the behavior of the simple antiferromagnet in a 
magnetic field. One should note that at this time no 
proof is known of the existence of a phase transition for 
a system described by (1), and commonly held ideas 
about finite temperature magnetic phase transitions 
are based essentially on models resulting from modified 
forms of (1); e.g., molecular field and Ising models. 

5. CASE FOR ( / i - l ) / e » l 

We turn our attention back to the Heisenberg 
Hamiltonian (9) in rotated coordinates, and attempt to 
more carefully treat a simple cubic lattice of spin S per 
site. We focus on the particular region A>1, 0<<C1, and 
use the Holstein and Primakoff22 expressions for the 

21 C. Garrett, J. Chem. Phys. 19, 1154 (1951). 
22 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
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FIG. 5. Reduced magnetization versus temperature (simple model). 

/ ^ g Y / 2 (24) 

with 
cJcg<2S. (25) 

In all our calculations we replace (25) by the usual self-
consistent approximation 

(cg%)Q<^2S. (26) 

We expect that for external fields which are suffi
ciently large compared to the critical field, the system 
will be accurately described at low temperatures by 
considering states of only a few spin excitations. 

Now if 
( * - l ) / f l » l , (27) 

where 
h^E/He 

=g*R/4SJz; (28) 
6=>kT/2SJz, (29) 

then we should be able to neglect terms like cfpcp for 
p> 2. On the physical consideration that at large fields 
the sublattice moments will be "dragged into paral
lelism," we take 7 = 1 so that the problem becomes 
analogous to the treatment of a low-temperature 
ferromagnet in a small magnetic field. The Hamiltonian 
with 7 = 1 is 

3C=/ Ef Es(5f^f+s^5f+5 f + a - )+^H E i St. (30) 

By using the leading terms in the expansion of (24), 
i.e., replacing ( 1 - (cfc/2S))m by 1, the Fourier trans-

spin operators m terms of Boson operators: 

5g+= (2S) i 'v( i^r-
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forms (12) (here interpreted for boson amplitudes) Observe that, as initially assumed, the deviatipn of a 
diagonalize the quadratic part of (30) which becomes from unity is exceedingly small for (A-1)/0^>1. As 

WiJ2SNJz=N-* *£*<**fck+(l-2k)S, (31) *~*0 f o r h>1> the magnetization becomes saturated; 
whereas the susceptibility and specific heat both tend 

where the spectrum is t0 z e r o 

« k = 2 ( A - l ) + ( l - T k ) . (32) 
6. PHASE BOUNDARY 

Since we are dealing with a noninteracting boson gas, ™ • _ . , . , .< . ,, ' ,., . .? , . & ?. ' To more accurately treat the region near the phase we readily compute thermodynamic averages according , , . , , . z*A^ , 
to (3) and find the average energy boundary, we introduce into (24) the truncated 

expansion 
(3Q)o/2SNJz=2(h-l)A+B+(l-2h)S, (33) 

and reduced magnetization ( l - f ^ Y * - 1 - | [ 1 + ( 8 5 ) - + 0 ( ^ ) > i ^ 

+0( )+0(^-3), (*>2). 
where .4 and B are denned as in (14) and (15), except \ S* / 
that for this (boson) system 

»it=rexp(coji,/0) — IT"1. (35) The resulting Hamiltonian contains quartic as well as 
quadratic terms in the c operators, and the free param-

Now for a simple cubic lattice of unit lattice constant, eter y will be selected variationally. 
(16) is simply j 0 ^e Fourier amplitudes Ck, we apply the canonical 

7k=i(cos4.+cosM-cos*.). (36) transformation (5) in which uk and vk satisfy (6). 
Thermal averages are computed according to (3) and 

In the constant density limit of N —* oo we find 

A 
(2*) ^T)3J 3 33 -f-r[ 2A(C-D)+C(A-B)-i 

+0(e-4(*-i)/^'W), (37) y f . l B 2A^A~B')+C(-C~D^1 

(2ir)zJ r r A*+(A-By+(C-DY-
B /"«(1-Tk)wk 

'2irf J T A*+{A-BF+(C-W-\ ,«,.[rf,„+^,.+ ...] +t»-t[iS-4+ -J 

+0(e-*weO'W), (38) +2hy(A-S), (43) 
where with 

d'^3d/2w, (39) 
and (27) obtains. 

To lowest order we have the following results for the B=sr1'JZi(ctfCf--c£ct+i)Q==N-1 Z)k(l—7k)*k, (44) 
reduced magnetization, susceptibility, and specific heat, c^z~l i,s(ctictf)o=N-1 £ k Xk 

respectively: 

4 ^ ^ E a < ^ f > o = i V - 1 L k * k , 

-(0 

3 v 3/2 e-2(h-i)id Z ^ s ^ E a ^ f W - ^ f + ^ o ^ A r ^ E k C l - T k ) ^ , 
(40) 

5 and 

3y/2 r2(A-i)/r ^k=z;k
2(l+^k)+^k(l+^k2) : 

0+1'2, (41) Xk==(l+2**k)w>k. 
(45) 

S 
anc* The mean occupation number is ^—(a^a^o. 

p\3wo/ ._^Q Y)2f4(hr-i)i$Q-i/2 (42) The requirement that F be stationary with respect to 
dT functional variations of vkj n^ €k, and variations of the 
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parameter 7, leads to the extremum conditions: 

iHto/wO-i], (46) 
ukvk= — |(Ak /cok), (47) 

o>*=(tf-M)m, (48) 

•k-EopM)-!]"1, (49) 

d(3C)0/2SNJz 

dy 
• = 0 , ( 7

2 < 1 ) , (50) 

d(3C)o/2SNJz 

dy 
< 0, (for a local minimum at 7 = 1). (51) 

The spectrum (48) is readily determined from 

d(3C)o/2SNJz d(5C)o/2SNJz 
$k=-lJ +(i-yk)JLl 9 (52) 

M dB 

and 

d(5C)0/2SNJz d(W)o/2SNJz 
A k = — + ( l - 7 k ) — - . (53) 

dC dD 

Conditions (46) through (53) are to be taken in conjunc
tion with (44) and (45). 

At this point we refer to Appendixes A and B where 
we connect this approach to the low-temperature cal
culations previously referenced.11'18,19 One will observe 
how our method simply reproduces the relatively well-
established low-temperature ferromagnetic and anti-
ferromagnetic results as special cases of a single varia
tional calculation. With this vote of confidence, the 
phase boundary is approached. 

We first differentiate (43) with respect to C and D 
and observe that all resulting terms contain either C, Dy 

or (1—72). Thus as y2-^1 we find the consistent solu
tion Ak=flk=C=Z)=0; a>k=£k. Consequently as we 
approach the phase boundary (defined by 7 = 1 ) from 
below, we pass from the nontrivial solution vk and 
Ak5^0; cok= (|k2~ Ak

2)1/2 to the trivial or identity solu
tion flk = Ak=0, Wk^^k. Ideally we would like to solve 
the coupled integral equations (44) with v^O below 
the boundary; however, with vk5*0 the form of the 
spectrum leads to three-dimensional integrals which are 
formidable for all but very special cases. To treat the 
region below the boundary we select the trial function 
flk=0, and thus do not treat the transformation varia-
tionally. This selection does not alter the equations for 
the phase boundary which is approached from above 
where v* already has vanished. 

With the convenient notation 

<r=l-(A/S), 

p=(A-B)/S, 

(54) 

(55) 

and z>k=0, Eqs. (44)-(53) lead to 

x~£2hy+(l-3y*)(*-p)ye, 

3 y = [ ( l - 7 2 ) p + 7 2 ( < r - p ) ] / 0 , 

*=Thr-p+-j; (Y2<1), 

(56) 

(57) 

( T 2 = l ) . 

a^i-s-1 £ rl^/oH]3 , 

p = 5 - 1 L e—le-ryh(ry)JLe-rvh(ry)^, 

(58) 

where 
W k = = { e x p [ ^ + 3 ^ ( l - 7 k ) ] - l } - 1 . (59) 

We have used the standard notation and integral 
representation for the Bessel functions of imaginary 
argument 

We first examine these equations for the leading low-
temperature (6=kT/2SJz<0) behavior. With the 
asymptotic forms of Bessel functions of large argument 
we find for 7 = 1 : 

h=l-(2A/S)+0(B), (60) 

» k = ( l - 7 k ) + 0 ( i l ) , (61) 

A/S~opi*/Sy (a=2S~ 1f(3/2)(3/2TT) 3 ' 2) , (62) 
and 

B/S=0(6U2). 

Equation (60) gives the leading expression for the 
phase boundary 

h^l-aF'2, ( 0 « 1 ) . (63) 

From (54) the reduced magnetization at the phase 
boundary is 

e r - l - f a ^ 2 , ( 0 « 1 ) . (64) 

Above the boundary we have 

« k » 2 ( A - l ) + 4 4 S ^ + ( l - 7 k ) , (65) 

and the reduced magnetization is 

aW2 

<r«l-
2f (3/2>*-i 

whereas the susceptibility is 

'da\ wlf2a $ 

£ e-[2(h~l)+4AS~l]mf8m-Z/2. ( £ £ ) 

/d<r\ wlf2a 

.bove f ( 3 / 2 ) ( 2 ( A - l ) + 2 a ^ 2 5 - 1 ) 1 / 2 
(67) 
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FIG. 6. Phase boundaries for 5= | , 1, and 2 (IBM 709). 

Notice that (67) is valid far enough above the phase 
boundary so that d<r/dh<Kl. If we try to approach the 
boundary from above for 0>O, the susceptibility suffers 
the same fluctuation28 divergence as found for the 
susceptibility of the isotopic jfemmiagnetic when 
h->0;6>0. 

On the other hand for y2 < 1, Eq. (57) gives the lowest 
order result 

y^h(l+2AS'r). (68) 

Since the net magnetization m is the projection of the 
sublattice magnetization <r, we have 

m*=y(l-AS-*). (69) 

Application of (60) and (68) demonstrates the con
tinuity of the magnetization across the boundary. The 
susceptibility below the boundary is 

dm/d/Obeiow-1; (70) 

consequently, (67) and (70) suggest a discontinuity in 
the susceptibility across the boundary. 

Even though the above theory is presumably most 
justified for 0<£1, we were able to obtain the higher 
temperature behavior of the phase boundary curve. To 
accomplish this the coupled equations were kindly 
programed for the IBM-709 computer by John Wills. 
The phase boundaries for 5 = | , 1, and 2 are shown in 

MR. Kubo, Phys. Rev. 87, 568 (1952). 
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FIG. 7. Reduced magnetization along the 
phase boundaries (IBM 709). 

Fig. 6, and the magnetization along the boundaries is 
given in Fig. 7. Notice that for higher spin values the 
magnetization at the maximum 0 is decreasing. This 
result, as well as the degeneracy of the solution, are in 
resemblance to Bloch's calculation for the jfartfmagnet 
where 0max was suggestive of the Curie temperature. 
Since neither calculation has strong a priori justification 
for 0~ 1, the nonvanishing of the magnetization at 0max 

may manifest the inadequacy of the approximation used 
rather than the physical behavior of the system near the 
critical temperature. 
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APPENDIX A 

It is easily seen that (SO) is satisfied for h*=y=0. For 
this case we have 

A~B, 

C=0, 
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and the spectrum duced sublattice magnetization is 

*\,» / A ^ f0-156 38'2r / (l-K')\ 
a>k = />(l-rk2)1/2, (A1) aml-AS-^1- — + - J f < 2 ) ( l - - — V 

which is the form exhibited by Keffer and Loudon.19 By / 2 (1—K')\ 
introducing the well-known quantities +6f (4)( 1 • J04 

1 l - 7 k 1 1 / 3 ( l - i T ) \ I 
* = - £ * = - L k — , (A2) +234f(6)(l — V 

JV (l-7k2)1/2 iV (l-7k2)1/2 V 5 / J 

K'=N-iY,Al-y*2)112, (A3) + ^ y ^ ^ e 6 + . . . j 5 - i ) ( A 1 1 ) 

which have been evaluated24 in the constant density in agreement with Oguchi's magnetization expression 
limit iV —> oo, we obtain even though our renormalized spectrum 

A=B^(K-D+P(y), (A4) W k = r i + ^ _ ! ! ™ e 4 + o ( e e ) l ( 1 _ 7 k T 2 ) ( A 1 2 ) 

C O , (A5) L . 2 5 2™ J 

agrees with Oguchi's spectrum only for 0=0. We see 
D=UK-Kf)+P(y)+Q(y), (A6) that Keffer and Loudon's19 results are thus obtainable 

variationally. 
w h e r e APPENDIX B 

For the ferr^magnetic we take 7 = 1 and / of opposite 
i f 1 sign to find 

P(y)= fflk »k , (A7) A=~N~iZ*nk) 

! , C = D = 0 , 
Q(y)= d?k(l-yjyi2-nk, (A8) with 

(2ir)3j »k= («""•-1)"1 , (0=kT/2SJz), (B2) 
and 

r (l-K')-2Q(y)-] / »k=2A+(l-55L" 1)( l -7k) . (B3) 
•̂  L 25 J / When h=0, the implicit spectrum is identical with 

Bloch's11 result for the ferromagnet in zero external 
«k= [exp y(1—7k

2)1/2— l ] - 1 , (A10) ^ e^- We e a s u y obtain the low-temperature expressions 

for the spectrum 

o>k=[;i-a-5-1f(5/2)^W-(S/4)T25-1f(7/2)0'W 
a n d +0(<?'»'2)](l-7k), (B4) 

A^=1.156- 1—K'—0.097. and the reduced magnetization 
ff=1-S-H (3/2)[0'«+ (3/2VS-Y (5/2)0'*] 

For low temperatures it is easily verified that the re- — (3/4)irS'-1f(5/2)6'612— (33/32)wiS~1^ (7/2)0'7/2 

+O(0'°i>), ($'=30/2*), (B5) 
24 P. Anderson, Phys. Rev. 86, 1 (1952). which coincide with the results of Keffer and Loudon.19 


